Asymptotic Properties of M-estimators Based on Estimating Equations and Censored Data

نویسنده

  • JANE-LING WANG
چکیده

Properties of Huber's M-estimators based on estimating equations have been studied extensively and are well understood for complete (i.i.d.) data. Although the concepts of M-estimators and in ̄uence curves have been extended for some time by Reid (1981) to incomplete data that are subject to right censoring, results on the general behavior of Mestimators based on incomplete data remain scattered and restrictive. This paper establishes a general large sample theory for M-estimators based on censored data. We show how to extend any asymptotic result available for M-estimators based on complete data to the case of censored data. The extensions are usually straightforward and include the multiparameter situation. Both the lifetime and censoring distributions may be discontinuous. We illustrate several extensions which provide simple and tractable suf®cient conditions for an Mestimator to be strongly consistent and asymptotically normal. The in ̄uence curves and asymptotic variance of the M-estimators are also derived. The applicability of the new suf®cient conditions is demonstrated through several examples, including location and scale M-estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

متن کامل

Inference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring

This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...

متن کامل

Asymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution

Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...

متن کامل

Analysis of Hybrid Censored Data from the Lognormal Distribution

The mixture of Type I and Type II censoring schemes, called the hybrid censoring. This article presents the statistical inferences on lognormal parameters when the data are hybrid censored. We obtain the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the unknown parameters. Asymptotic distributions of the maximum likelihood estimators are used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999